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det mH(q) = 4 ( -  1)~c~,R (A.15) 
qt=P0,t; qz=Ctl 

[f2(q)la/=po,: ~,=~1= [f2(q- H)]q,=l,o.,: e,+~, 

_- 1 [e+(_ l )~R ] (A.16) 
T 

[f2(q+H)]q,=v0. , ;q~=,n=-[e-(-  1)iR]. (A.17) 

Substituting these results in (A.6) to (A.8) we can obtain 
equations (3-13) to (3.16) for dynamical field functions. 
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In the present article (i) a new formula for the single-crystal rocking curve for both the centrosym- 
metric and polar Bragg case is given; (ii) a geometrical construction is derived, whence many proper- 
ties of the rocking curve are easily visualized; (iii) the different analytical expressions introduced by 
several authors are shown to be a consequence of different definitions of the variable 'y'. 

1. Introduction 

The rocking curve (RC) for perfect crystals in the 
Bragg case has been discussed by many authors. A list 
of references may be found in well-known books (e.g. 
Zachariasen, 1945; Laue, 1960; James, 1950) or in the 
articles of Hirsch & Ramachandran (1950), Batterman 
& Cole (1964) and Bucksch, Otto & Renninger (1967). 
Although many of these authors follow the treatment 
of Zachariasen, the expressions in the 'normalized 
variable y'* differ slightly one from the other. 

The first difference was pointed out by Hirsch & 
Ramachandran (1950). Their expression is more gene- 
ral than that of Zachariasen, and the discrepancy is 
shown to be a consequence of some approximations. 
Cole & Stemple (1962) derived a general expression 
for both the centrosymmetric and polar case and 
Bucksch, Otto & Renninger (1967) made a physical 
analysis of it. In their paper (p. 508) one reads (in a 
loose translation) - 'For  small g and ~:t the tails of the 

* By 'normalized y' we mean a linear transform of the devia- 
tion from the Bragg angle such that the range of total reflexion 
lies between v = -  1 and v= 1 

t Defined as 

]Fu" I 1 - b  Fo" 
K-- -F# , g=-½1blmle I . IFn,I . 

RC approach the Darwin curve asymptotically from 
below. But for greater g and J¢ they rise above this 
curve.' 

On the other hand, Battermann & Cole (1964, p. 707) 
state 'The Darwin-Prins curve matches the Darwin 
curve only at a point close to the low angle slope of the 
peak. It is less than the Darwin curve at all other 
points'. Since they also use some approximations 0c) 
the last statement seems to be their consequence. These 
two statements are rather contradictory. Therefore in 
the first part of the present article we shall follow 
Batterman & Cole's (1964) (hereafter BC) derivation, 
showing that their statement is quite general, and we 
shall derive a modified formula for the RC. 

In the second part we shall give a simple geometrical 
construction by means of which one can visualize 
many interesting properties of the RC. 

Finally we shall show, that by redefining the 'nor- 
malized variable y '  by means of a linear transformation, 
one gets the formulae of Hirsch & Ramachandran 
and Cole & Stemple, and thus the statement of 
Bucksch, Otto & Renninger will be brought into agree- 
ment with that of BC. 

2. Derivation of the general formula 

By definition the RC is the ratio of the diffracted and 
incident power plotted as a function of deviation from 
the Bragg angle 0-0B, i.e. 
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cf~(o-oB)= P.(O-O~,) 
i'o 

If  we denote by So and S n  the cross sections of the 
incident and diffracted beams respectively, we have 

c N = ( s ~  lid~(& Io)=(si-i/So) . I(Ezl/Eo)l 2, 

where E n  and E0 are the respective field amplitudes. 
Introducing the usual parameter b = ?0/Ym where y~ are 
the .direction cosines of the respective beams, one may 
show that SMSo = [bl -~. Following BC, p. 706, equation 
103, we get 

C~= IF~/F~I I t /+(r/z-  1)'/212, 

(with the sign chosen in such a way that CH e ---, 0 for 
lql--->oo), where F/~ is the structure factor (generally 
complex, including the H6nl corrections), and 

- b(O-O ,B) sin 20B -½FFo(1- b) 
. . . . . . . . . . . . . . .  (1) 

~ =  FIPI IbI1/Z(FH f ~) 1/2 

with the same notation as in BC. (The only difference 
is the change of sign in r/, making r /and  0 increase in 
the same sense). Here P is the polarization factor (1 or 
cos 20B), I'=re 22/(7~ V) where re=e2/(4r~eo me 2) and 
V the unit cell volume. 

As r/is invariant under the transformation H ~ H, 
we may write 

C~r= lFn/F~lCH (2) 

with 

C n =  It/+ (r/2 - 1)1/2122 C~ (3) 

Thus the shape of both C~ and C~ is equal and their 
ratio is 

C~/C~= lFtt/F~l 2 • 

Therefore in the following we shall deal with CH only. 
Using ~ = (r/2- 1) 1/2, which implies r/2- ~2 = 1, we have 
(with * denoting the complex conjugate) 

c u - -  (r/+ ~) (~* + ~*) = I~l z + I~l z + (~r/* + r/~*). 
But 

(q2_ g~) (q , z_  g,2) = 1 
wherefrom 

( ~ ,  + ~ , ) 2  = (1~12 + 1~12)2_ 1 

If  we define L = I~12 + I~12, we get the important  formula 

CH=L-( z2-1) 1/2 t (4) 

first obtained by Miller (1935). 
Further 

1~_12= [(~ 2 -1 )  (~/,2_ 1)]1/2 
gives 

I~12 = [(11/I 2-1)2 + 4r/"211/2 , 
where 

r/" = Ira(r/). 
This gives the result 

L =  Ir/] 2 + [(Ir/I 2 -  1)2 + 4712t,]1/2 . (5) 

Now we return to the definition of r/ [equation (1)]. 
The denominator is generally complex, and we may 
therefore write (with ~ = 0-0B) r/= e~0 +f l  

with 

- b  sin 20B Fo(1-b)  
. . . . . . .  1 

FIPI Ibl '/2 (FH F~) '/2 ' t =  2 IPI Ibll/E(FHFR) 1/e 
(6) 

~0 is a real variable, e = e ' - i e "  a n d f l = f l ' - i f f ' ,  therefore 

r/' =c~' ~0+fl' } 
r/" = 0d'~0 +f l"  , (7) 

By eliminating ~0 we get 

r/" = ( ce ' / . ' ) r / ' -  [( ."1. ' ) /~ '- /~"1 

or by defining the important  parameters 

K=og'/o: and G=Kf l ' - f l " ,  (8) 
we get 

r f ' = K r f - G .  (9) 

If  we realize that 
[r/12 = r/'z + r/''e 

from equations (5) and (9) we can write 

L = r/'2 + (Kr/' - G) 2 + {[r/'2 + (Kr/' - G) 2 - 1] 2 
+4(Krf -G)2}l/2 . (10) 

We may choose r/' for our 'normalized y'.  For  the case 
of no absorption (~" = f l " =  0) we get the Darwin curve 
(K=  G = 0), and the region of total reflexion lies in the 
interval - 1  < r/'___ 1, as it should be. If  absorption is 
present, however, one point always remains, namely 
riD= G/K, where the Darwin curve is reached, other- 
wise the curve is always lower. Thus the statement of 
BC is proved to be right even in those cases, where the 
condition - 'F'~/F~ is small enough compared with 
unity' (BC, p. 707) - is not fulfilled.* 

3. Some geometrical considerations 

The RC Cf~ may be constructed in three steps, namely: 
(i) According to (3), C,/is a real function of the com- 

plex variable r/, and thus one can construct a surface 
z=Ci-i(rl) above the (rf, rf') plane. This surface is 
general and independent of the actual physical situa- 
tion. 

(ii) The physics is introduced by relation (9), with two 
real constants K and G. The actual CH is a cut of this 
plane with the general surface, followed by a projec- 
tion, paralled to the (0,/") axis, of this cut on the (r/', z) 
plane. 

(iii) Conversion of the variable r/' to the angle variable 
~0 = 0-0B according to (7) and change of scale of z by 
multiplying with ]F~/F HI according to (2). 

t Here again, if we u s e  ~r/*+r/~*=-t-(L2--1) I/2, we must * To be more exact this is true for thecurve Cn,whichequals 
take the minus sign for the same reason as above, the RC only in the non-polar case. 
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An insight into the properties of the general surface 
may be obtained in the following way [see equations (4) 
and (5)]: 

C H - z = L - ( L  2-1)1/2 < 1 
L = r/'z + 1/''z + [(r/'2 + r/''2 - 1) 2 + 4r/"211/2 > 1 

This equation may be transformed into 

2q'2 2r]"2 
- - - t - - - - - = 1  
L + I  L - 1  

and from the preceding one we have L=(z2+  1)/(2z); 
thus 

½(L+ 1) = (z+ 1)2/(4z) 
½(L-  1) = ( z -  1)2/(4z) 

If we take a fixed z ~ (0,1) we get an ellipse 

/7'2 y]"2 
a2(z ) ,1, a2(z ) - 1 (11) 

with axes 

al(z) = ½(1 + z)/I/z and a2(z)= ½(1 - z)/l /z 

and foci in 
r/;4z) = ~ - r , , ~ _ , ~ : ~ / ~ -  + 1 .J_' \t* 1 ~2 . /  ~ - -  , 

common to all ellipses (11), independent of z. Thus the 
general part of our construction is solved. 

The straight line (9) cuts these ellipses in points 
(r/', r/" = K r / ' -  G, z). (Because of [G/KI > 1 (see Appen- 
dix I), this straight line never passes between the two 
foci.) Cn on the r/' scale is then the projection of these 
points in the (r/', z) plane (see Fig. 1). One sees im- 
mediately some important properties of CH: 

(i) If K =  G= 0, the Darwin curve is obtained as a cut 
of the general surface with the (r/', z) plane. 
(ii) If K and G ¢ 0, the curve is asymmetric and in the 
point r/~ = G/K matches the Darwin curve; in all other 
points it is lower. For G = K this point coincides with 
one of the foci, and thus 'total reflexion' is reached. 
(iii) If K=0,  G#0 ,  the curve is symmetrical but 
always lower than the Darwin curve. 

The constants Kand G are the same for both the H and 
/-7 reflexion; thus the shapes of both RC's are equal. 
The only difference is in the ratio IF~/F~I which ap- 
pears in (2). From this construction some important 
points are easily obtained. The sole 'Darwin' point r/~ 
was just mentioned. The maximum of the RC may be 
found by finding an ellipse to which the straight line 
(9) is tangent. This leads to 

~l'm=(K/a) (62,1, 1) (1,1, K2) -~ ] 
and [ (12) 

z~=(1.1. K2)-1 [(G 2 .1. 1 )1/2-(G2-K2)1/212. 

C ~ ( m a x ) = l F u / F ~ l .  z~;  thus one must show that 
C~_< 1. The proof is given in Appendix II. 

At the midpoint of the region of total reflexion 
(rfo=O),zo=[(G2+l)l/2-lG[]2; Zo is independent of K 
and thus common to all Cn's with the same G, 

4. Alternative definitions of 'y' 

Any linear transformation y = C~/' + D, with C(K, G) 
and D(K,G)  such that for K = G = 0  C(0,0)=I ,  
D(0, 0) = 0 may be used as an alternative 'normalized y'. 
Let us try 

y=(1  + K Z ) t f - K G  (13) 
which gives 

rf = (1.1. K2) -~ (y .1. KG). 

Substituting this in (10), we get 

L=(1 + K2)-l(y2+G2+[(y2-G 2-1 + 1(2) 2 

+ 4 ( G y - X ) 2 ]  ~/2) (14) 

which is identical with the formula from Hirsch & 
Ramachandran (1950) for centrosymmetrical crystals. 
In our derivation, however, it is valid for the general 
case. We therefore must discuss the definitions of G 
and K, which are obviously generalizations of the g 
and x for the centrosymmetrical case. We note that 

F~ . F ~ = ( F k  .+ iF~) (F~' +iF*if) 
= [F~r] 2 [1 - ]F~ /F~]  2 + i ( r ~ / F ~  + F*~'/.F~')] 

which in Cole & Stemple's (1962) notation reads 

FH . r ~ =  [Fkl ~ (1 - , ¢ 2  + iZp) . 

For our purposes we set 

1 - K z + i 2 p = ( a ' + i a " )  z, lal2=a'Z+a ''z (15) 

and write (6) 

~= A / a =  A/lal 2 . (a' - ia") 

f l= B/a . (F'o .1. iF o) = B/lal: . [(a'F; + a"Fo') - i(a"Fo 

-a ' ro ' ) ]  

with 
- b sin 208 1 - b 

A -  r l e l  Ibl 1/2 IFhl and B = - ½  IPI lbi i72 IF;el " (16) 

ZM 

q'o-C~/K , , ',,'-.g~ ] 

t~ 

" ' ~ .  
" \  

. . . .  
---_-_- z__, 

e e  J " - ~  I']" 

- 6 " ,  / "  ~ , 2  - -  

Fig. 1 The construction of Ca (G= -0,1, K=0,05). - Darwin 
curve, - -  • • - -  Darwin-Prins curve. The straight line 
[equation (9)] and the construction of two points of Cn are 
shown, using both projections of the ellipses E1 and E z. Some 
important points are indicated, 
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Then (8) 

K = ~ " / & = a " / a ' ,  G = K f l ' - f l " = B / a ' .  F o. (17) 

For the centrosymmetric case t c=p=F~/F~ ,  which 
gives a ' = l ,  a " - x ,  thus K=K, G=g,  as defined by 
Hirsch & Ramachandran. Therefore, we may write 

G=g/a '  . (18) 
From (15) we get 

1-/¢2 = a'2(1-K2), a 'a"=p  
a'2(l + KZ)= la12-- [(1 - tcz)2-t-4p2]X/2. 

Substituting this result into (14) 

L=[(1 - trz)2 + 4pZ]-l/z 
x {(ya')Z+gZ+[((.ya')2-g2-1 + tcz)z+4{g(ya')-p}2]t/2} . 

and defining 
y ' = y a '  , (19) 

we get the formula (13) of Cole & Stemple (1962) with 
all consequences stated in Bucksch, Otto & Renninger 
(1967). For the case of no absorption, all constants 
g, k, p and of course K and G are zero, and r/' = y  = y '  
[from (13), (19)]. From the definition of y (13) and 
using (9) one gets 

y = r f  + Krf' 

Looking at the Fig. 2, one sees that one may obtain CH 
on the y scale by projecting the cut on the (r/', z) plane 
in the direction normal to this cut. Therefore one can 
conclude, that on the y scale CH will be broadened, and 
one can find two points where C~ cuts the Darwin 
curve. For the non-polar case those points are found by 
comparing the expression (14) with that for the Darwin 
curve L = 2 y  2 - 1 ,  ([y[ > 1) and one gets e.g. for K =  - G  
y l =  - 1, yz= 1 +(1 + K Z )  -1/2 . 

Conclusions 

We have shown that by the suitable definition of the 
'normalized variable y' (and the constants G and K) 

z,,\.,,:~ It ~ 

• ': ~ i - 1  ~ i  ~ I 
/ ' r y 2  ' - ' - P  q, 

Fig. 2. Illustration of the effect of broadening of C~ on the y 
scale ( - G  = K =  0,5). Cn on the r / sca le  is always lower ex- 
cept in the point ~/D'. The points of intersection of the RC on 
the y scale with the Darwin curve are shown (yb Yz). 

one may obtain a general formula for the RC for the 
Bragg case. This means that one needs only one com- 
puting program. All the physics is involved in the 
constants K and G, and in the final transform of the 
RC to the desired angle variable. By dividing the 
problem in the 'general' and 'physical' part, one could, 
at least theoretically, draw a map of the general 
surface once and for all, and from the computed 
K and G draw the straight line (9) and read directly from 
the graph the coordinates for some points of the RC. 

Further we have shown that different formulae, 
introduced by several authors are consequence of dif- 
ferent definitions of the 'normalized' variable and we 
have found the transformations between these varia- 
bles. 

APPENDIX I 

According to equation (17) 

G/K=BFo/a" . 

From (15) we get 

a"2= ½{[( 1 - Kz) z + 4p211/2 - ( 1 - K 2) }. 

As p =  Re(F~r/F~), x =  [F~r'/F~I and s =  Im (F~r'/F~-) we 
may put x 2 -  s 2 instead of p2 and get 

a"Z=½{[(1 + tcz)Z-4sZl l /Z-(1-  tc2) } < tc2 

the equality being reached only for s = 0. 
Thus using (16) 

,BI IF o, ,l - b ,  [ Fo" I 
[G/KI >- tc - ½ IP[ Ib] 1/z ~'~ > _ 1 q.e.d. 

APPENDIX H 

C~r(max ) = IFn/F~Iz M. Now (see e.g. Cole & Stemple, 
1962) 

1 +/¢2 + 2s 
[F~t/F~ ]= [(l_•Z)Z + 4p211/z 

Equation (12) gives 

zM=(1 +K2)-1 [(o2+ 1)1/2_ (c~_ ~;2)1/212 
=(1 + K z) [(G2+ 1)l/2+(GZ-KZ)a/z] -z . 

From (15) 
1 + K2 = [(1 -Kz)2+4pZ]l12/a'2 

and using (18) we get 

1 +~¢2+2s 
C~(max) = [(g2 + a,2)1/2 + (g2_a,,Z)m]2 = 

1 +KZ+2s 
2gZ + (a'Z _ a,,Z) + 2[g4 + gZ(a,2 _ a,Z) _ a,Za,,211/2" 

NOW a t 2 - - a  ' t 2 =  1 --I£2~ atatt=p 

But g~>_ IF o/V/,I >_ Ir;;/r/ ,I  =K~ . 

Thus 
1 + K 2 + 2 s  1 +1¢z+ 2s 

C~(max) < 1 +td+2(x2-pZ)  i/z - I +~2+2]s1 <- lq.e.d. 
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Neutron single-crystal analysis of complex protein structures requires the collection of intensity data 
on a large number of reflections. The use of time-of-flight analysis (in particular Fourier time-of-flight 
analysis employing phase detection) of diffraction data, offers a significant increase in the efficiency of 
the use of reactor neutrons. Such a method would facilitate the use of neutron diffraction in protein 
structure work. In this paper, we investigate the use of the Fourier chopper in single-crystal work. 
We examine the effect of various system parameters (frequency stability, flight path fluctuations, col- 
limation, sample mosaic spread, inaccuracy in phase detection, and statistical counting errors) and 
determine general specifications for such an apparatus. None of these specifications appears to be 
beyond present day technology. 

1. Introduction 

The use of neutron diffraction in structure studies of 
complex organic molecules is attracting the interest of 
crystaUographers (Moore, Willis & Hodgkin, 1967; 
Schoenborn, 1969). Neutrons offer the following ad- 
vantages: (1) hydrogen atoms become visible, (2) 
nitrogen atoms may be distinguished from carbon 
or oxygen atoms, (3) damage to specimens during ir- 
radiation is absent and (4) anomalous dispersion offers 
the possibility of easily phasing diffraction data. The 
chief disadvantage of neutrons is that compared with 
X-ray sources, the neutron flux (monochromated and 
collimated) available from even the highest flux reac- 
tors is down by a factor of 105 [as compared with a 
copper target rotating anode X-ray source (Arndt, 
1969)]. 

* Work performed under the auspices of the U.S. Atomic 
Energy Commission, 

Neutrons and neutron sources differ from X-rays and 
their sources in a number of additional ways. Neutron 
velocity is low (thermal neutron velocity is of the order 
of 2200 meter/second). The neutron source emits a 
Maxwellian distribution of velocities unlike the char- 
acteristic radiation of X-ray sources. In spite of these 
fundamental differences, present day neutron diffrac- 
tion apparatus is basically identical to its X-ray counter- 
part. Typically, a narrow 'slice' of the reactor spectrum 
is selected by a crystal, providing a beam of mono- 
chromatic radiation which is then fed into a spectro- 
meter equipped with a computer-controlled four-circle 
goniometer (Hamilton, 1968). Because this scheme of 
collecting data requires an essentially monochromatic 
beam, most of the source neutrons are wasted. 

Other inefficiencies are built into this scheme. Data 
is taken sequentially, rocking the crystal through one 
reflection, then another, and so on. At any given time, 
typically less than one part in 106 of the neutrons 
~triking the monochromator are detected at the counter. 


